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nag_rngs_basic (g05kac)

1 Purpose

nag_rngs_basic (g05kac) returns a pseudo-random number taken from a uniform distribution between 0
and 1.

2 Specification

double nag_rngs_basic (Integer igen, Integer iseed[])

3 Description

nag_rngs_basic (g05kac) returns the next pseudo-random number from a uniform (0,1) generator.

The particular generator used to generate random numbers is selected by the value set for the input
parameter igen. Consult the g05 Chapter Introduction for details of the algorithms that can be used.

The current state of the chosen generator is saved in the integer array iseed which should not be altered
between successive calls. Initial states are set or re-initialised by a call to nag_rngs_init_repeatable
(g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc)
(for a non-repeatable sequence).

nag_rngs_uniform (g05lgc) may be used to generate a vector of n pseudo-random numbers which, if
computed sequentially using the same generator, are exactly the same as n successive values of this
function. On many machines nag_rngs_uniform (g05lgc) is likely to be much faster.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Parameters

1: igen – Integer Input

On entry: must contain the identification number for the generator to be used to return a pseudo-
random number and should remain unchanged following initialisation by a prior call to one of the
functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

2: iseed½4� – Integer Input/Output

On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

The generator with the smallest period that can be selected is the basic generator. The period of the basic
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generator is 257.

Its performance has been analysed by the Spectral Test, see Section 3.3.4 of Knuth (1981), yielding the
following results in the notation of Knuth (1981).

n �n Upper bound for �n
2 3:44� 108 4:08� 108

3 4:29� 105 5:88� 105

4 1:72� 104 2:32� 104

5 1:92� 103 3:33� 103

6 593 939
7 198 380
8 108 197
9 67 120

The right-hand column gives an upper bound for the values of �n attainable by any multiplicative

congruential generator working modulo 259.

An informal interpretation of the quantities �n is that consecutive n-tuples are statistically uncorrelated to
an accuracy of 1=�n. This is a theoretical result; in practice the degree of randomness is usually much
greater than the above figures might support. More details are given in Knuth (1981), and in the
references cited therein.

Note that the achievable accuracy drops rapidly as the number of dimensions increases. This is a property
of all multiplicative congruential generators and is the reason why very long periods are needed even for
samples of only a few random numbers.

9 Example

The example program prints the first five pseudo-random numbers from a uniform distribution between 0
and 1, generated by nag_rngs_basic (g05kac) after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text

/* nag_rngs_basic(g05kac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{

/* Scalars */
double x;
Integer i, igen;
Integer exit_status=0;

/* Arrays */
Integer iseed[4];

Vprintf("g05kac Example Program Results\n\n");

/* Initialise the seed */
iseed[0] = 1762543;
iseed[1] = 9324783;
iseed[2] = 42344;
iseed[3] = 742355;
/* igen identifies the stream. */
igen = 1;
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g05kbc(&igen, iseed);
for (i = 1; i <= 5; ++i)

{
x = g05kac(igen, iseed);
Vprintf("%10.4f\n", x);

}
return exit_status;

}

9.2 Program Data

None.

9.3 Program Results

g05kac Example Program Results

0.0893
0.9510
0.4064
0.7432
0.9498
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