
NAG C Library Function Document

nag_rngs_basic (g05kac)

1 Purpose

nag_rngs_basic (g05kac) returns a pseudo-random number taken from a uniform distribution between 0
and 1.

2 Specification

double nag_rngs_basic (Integer igen, Integer iseed[])

3 Description

nag_rngs_basic (g05kac) returns the next pseudo-random number from a uniform (0,1) generator.

The particular generator used to generate random numbers is selected by the value set for the input
parameter igen. Consult the g05 Chapter Introduction for details of the algorithms that can be used.

The current state of the chosen generator is saved in the integer array iseed which should not be altered
between successive calls. Initial states are set or re-initialised by a call to nag_rngs_init_repeatable
(g05kbc) (for a repeatable sequence if computed sequentially) or nag_rngs_init_nonrepeatable (g05kcc)
(for a non-repeatable sequence).

nag_rngs_uniform (g05lgc) may be used to generate a vector of n pseudo-random numbers which, if
computed sequentially using the same generator, are exactly the same as n successive values of this
function. On many machines nag_rngs_uniform (g05lgc) is likely to be much faster.

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Parameters

1: igen – Integer Input

On entry: must contain the identification number for the generator to be used to return a pseudo-
random number and should remain unchanged following initialisation by a prior call to one of the
functions nag_rngs_init_repeatable (g05kbc) or nag_rngs_init_nonrepeatable (g05kcc).

2: iseed½4� – Integer Input/Output

On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

The generator with the smallest period that can be selected is the basic generator. The period of the basic

g05 – Random Number Generators g05kac

[NP3645/7] g05kac.1



generator is 257.

Its performance has been analysed by the Spectral Test, see Section 3.3.4 of Knuth (1981), yielding the
following results in the notation of Knuth (1981).

n �n Upper bound for �n
2 3:44� 108 4:08� 108

3 4:29� 105 5:88� 105

4 1:72� 104 2:32� 104

5 1:92� 103 3:33� 103

6 593 939
7 198 380
8 108 197
9 67 120

The right-hand column gives an upper bound for the values of �n attainable by any multiplicative

congruential generator working modulo 259.

An informal interpretation of the quantities �n is that consecutive n-tuples are statistically uncorrelated to
an accuracy of 1=�n. This is a theoretical result; in practice the degree of randomness is usually much
greater than the above figures might support. More details are given in Knuth (1981), and in the
references cited therein.

Note that the achievable accuracy drops rapidly as the number of dimensions increases. This is a property
of all multiplicative congruential generators and is the reason why very long periods are needed even for
samples of only a few random numbers.

9 Example

The example program prints the first five pseudo-random numbers from a uniform distribution between 0
and 1, generated by nag_rngs_basic (g05kac) after initialisation by nag_rngs_init_repeatable (g05kbc).

9.1 Program Text

/* nag_rngs_basic(g05kac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{

/* Scalars */
double x;
Integer i, igen;
Integer exit_status=0;

/* Arrays */
Integer iseed[4];

Vprintf("g05kac Example Program Results\n\n");

/* Initialise the seed */
iseed[0] = 1762543;
iseed[1] = 9324783;
iseed[2] = 42344;
iseed[3] = 742355;
/* igen identifies the stream. */
igen = 1;

g05kac NAG C Library Manual

g05kac.2 [NP3645/7]



g05kbc(&igen, iseed);
for (i = 1; i <= 5; ++i)

{
x = g05kac(igen, iseed);
Vprintf("%10.4f\n", x);

}
return exit_status;

}

9.2 Program Data

None.

9.3 Program Results

g05kac Example Program Results

0.0893
0.9510
0.4064
0.7432
0.9498

g05 – Random Number Generators g05kac

[NP3645/7] g05kac.3 (last)


	g05kac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	igen
	iseed

	6 Error Indicators and Warnings
	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


